We fabricated 3 types of ETL, mp TiO2, ZnO, and ZnO coated on mp TiO2(ZMT) to compare the photoelectric conversion efficiency (PCE) and fill factor (FF) of Perovskite solar cells. The structure of the cells was FTO/ETL/Perovskite (CH3NH3PbI3)/spiro-MeOTAD/Ag. SEM morphology assessment of the ETLs showed that mp TiO2 was porous, ZnO was flat, and the ZMT porous surface was filled with a thin layer. Via XRD measurements, the crystal structures of mp TiO2 and ZnO ETL were found to be anatase and wurtzite, respectively. The XPS patterns showing energy bonding of mp TiO2, ZnO, and ZMT O 1s confirmed these materials to be metal oxides such as ETL. The electrical characteristics of the Perovskite solar cells were measured using a solar simulator. Perovskite solar cells with ZMT ETL showed showed PCE of 10.29 % than that of conventional mp TiO2 ETL devices. This was considered a result of preventing Perovskite from seeping into the ETL and preventing recombination of electrons and holes.