PURPOSES : The purpose of this study is to evaluate the effectiveness of self-luminescent road markings using driving simulation.
METHODS : In this study, a driving simulation was conducted to evaluate the effectiveness of self-luminescent road markings. The details of this study are as follows. Highway sections were categorized as tunnels, tunnel approaches, bridges, merging areas, mainlines, and curbs. The luminance of the existing road markings was collected through field measurements. The luminance of the self-luminescent road markings was collected through experimental measurements. The luminance of the road markings is converted into a brightness ratio to be applied to the driving simulation. Road facilities at night were visualized during the driving simulation. Driving simulation was tested by 30 participants. Each participant rated the visibility perception of both the road markings ahead of 90 m with a 5-point scale. The log data generated from the driving simulation tests were analyzed.
RESULTS : The luminance of the existing road markings and self-luminescent road markings was measured. The luminance of the existing and lab-based road markings was converted into a brightness ratio. The road facilities of highway sections were investigated for driving simulations. The driving simulation was tested by 30 participants. Visibility perception ratings and log data from the driving simulation were analyzed. The average of visibility point increased from 1.01 to 4.63 when self-luminescent road markings were added to the existing road markings. The average speed also increased when self-luminescent road markings were added to existing road markings.
CONCLUSIONS : In conclusion, self-luminescent road markings can improve the visibility of road markings and driving speed, particularly in highway sections where driving speed decreases owing to low visibility.