Due to its excellent processability, thermal conductivity and high corrosion resistance, copper tubes applied to heat exchangers are being joined through brazing to increase heat exchange efficiency. In order to improve performance, the issue of joint quality of copper tubes, a major member of heat exchangers, is emerging, so research is needed to obtain excellent joint quality of brazing joints that may be damaged. In this study, the quality change of joints according to process variables was studied through induction heating brazing experiments using high frequency. The depth of penetration, which indicates the quality of the junction, was measured, and the center position of the high-frequency electrode and the height of the electrode, which change the location of the heat source applied to the junction, were selected as process variables. Lastly, the thermal image data obtained between the brazing experiments were obtained and the joint quality according to the temperature gradient of the joint was analyzed.