논문 상세보기

딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측 KCI 등재

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/420089
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

고속철도 교량은 열차 하중에 의한 공진으로 인한 동적응답 증폭의 위험이 존재하므로 설계기준에 따른 동적해석을 통한 주행안전 성 및 승차감 검토를 반드시 수행하여야 한다. 그러나 주행안전성 및 승차감 산정 절차는 열차의 종류별로 임계속도를 포함하여 설계 속도의 110km/h까지 10km/h 간격으로 동적해석을 일일이 수행해야 하므로 많은 시간과 경비가 소요된다. 이 연구에서는 딥러닝 알 고리즘을 활용하여 별도의 동적해석 없이 주행안전성 및 승차감을 사전에 예측할 수 있는 딥러닝 기반 예측 시스템 개발하였다. 제안 된 시스템은 철도교량의 열차별, 속도별 동적해석 결과를 학습한 후 학습 완료된 신경망을 기반으로 한 예측 시스템이며, 열차속도, 교량 특성 등의 입력파라미터에 따른 주행안전성 및 승차감 산정 결과를 사전에 예측할 수 있다. 제안된 시스템의 성능을 확인하기 위 하여 단경간 직선 단순보 교량을 대상으로 한 주행안전성 및 승차감 예측을 수행하였고, 주행안전성 및 승차감 산정을 위한 상판 연직 변위 및 상판 연직가속도를 높은 정확도로 예측할 수 있음을 확인하였다.

High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

목차
Abstract
1. 서 론
2. 주행안전성 및 승차감 예측시스템 개발
    2.1 주행안전성 및 승차감 검토 절차
    2.2 딥러닝 알고리즘
    2.3 딥러닝 기반 주행안전성 및 승차감 예측 시스템 구축
3. 단경간 단순교 철도 교량에 대한 예제
4. 결 론
감사의 글
References
요 지
저자
  • 김민수(한국교통대학교 철도공학부 박사과정) | Minsu Kim (Graduate Student, School of Railroad Engineering, Korea National University of Transportation)
  • 최상현(한국교통대학교 철도공학부 교수) | Sanghyun Choi (Professor, School of Railroad Engineering, Korea National University of Transportation) Corresponding author