The reduced graphene oxide/single-wall carbon nanotubes composites are coated onto the polyurethane substrate using spray coating technique to produce a stretchable and semi-transparent supercapacitor. The electrochemical properties of the stretchable and semi-transparent full device as a function of stretching cycles are characterized using electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the stretchable and semi-transparent supercapacitor exhibit good capacitive behavior even after prolonged stretching cycles up to 100. The highest capacitance value of the stretchable and semi-transparent supercapacitor (unbent) is 21.4 F g−1. The capacitance value of the stretchable and semi-transparent supercapacitor is retained 62% after 100th stretching with application of 3000th galvanostatic charge/discharge cycles.