본 연구는 범주속성들이 공통원인 혹은 공통효과 인과 네트워크로 연결되었을 때 인과강도에 따른 속성추론을 검증했다. 인과범주에서 속성추론을 검증한 기존 연구들은 인과관계의 방향, 연결된 속성의 개수, 원인 혹은 결과의 여부 등에 따라 고유한 추론 패턴이 나타남을 보여주었다. 다만 기존 연구들은 인과관계에 따른 추론패턴을 주로 탐색했으며 인과관계의 효과가 인과강도에 따라 어떤 변화를 보이는지 확인한 연구는 찾아보기 어렵다. 본 연구에서 는 공통원인(실험 1), 공통효과(실험 2) 네트워크에서 인과강도에 따른 속성추론을 검증했다. 이를 위해 참가자들에 게 속성들이 인과적 관련성을 가지는 범주를 학습하게 한 다음 속성추론 과제를 실시하도록 했다. 실험 결과 인과관 계 뿐만 아니라 인과강도 역시 속성추론에 중요한 영향을 미쳤다. 인과강도가 강할 떄 공통원인 속성에 대해서는 추론이 약해진 반면 공통효과 속성에 대해서는 추론이 강해졌다. 또한 인과강도가 강할 때 공통원인이 존재하는 경 우 결과속성들에 대한 추론이 강해진 반면 공통효과에서는 반대의 결과가 나타났다. 특히 공통효과에서는 인과강도 가 강할 때 인과적 절감이 더 뚜렷하게 나타났다. 이 결과들은 인과적 범주에서의 속성추론에서 참가자들은 인과관 계 뿐만 아니라 인과강도를 고려한다는 것을 일관성있게 보여준다.
This research investigated category-based feature inference when category features were connected in common cause and common effect causal networks. Previous studies that tested feature inference in causal categories showed unique inference patterns depending on causal direction, number of related features, whether the to-be-inferred feature was cause or effect, etc. However, these prior studies primarily focused on inference pattens that arise from causal relations, and few studies directly explored how the effects of causal relations vary depending on causal strength. We tested feature inference in common cause (Expt. 1) and common effect (Expt. 2) causal categories when casual strengths were either strong or weak. To this end, we had participants learn causal categories where features were causally linked and then perform feature inference task. The results showed that causal strengths as well as causal relations had important impacts on feature inference. When causal strength was strong, inference for common cause feature became weaker but that for the common effect feature became stronger. Moreover, when causal strength was strong and common cause was present, inference for the effect features became stronger, whereas the results were reversed in common effect networks. In particular, in common effect networks, casual discounting was more evident with strong causal strength. These results consistently demonstrate that participants consider not only causal relations but also causal strength in feature inference of causal categories.