The influence of specimen geometry and notch on the hydrogen embrittlement of an SA372 steel for pressure vessels was investigated in this study. A slow strain-rate tensile (SSRT) test after the electrochemical hydrogen charging method was conducted on four types of tensile specimens with different directions, shapes (plate, round), and notches. The plate-type specimen showed a significant decrease in hydrogen embrittlement resistance owing to its large surface-to-volume ratio, compared to the round-type specimen. It is well established that most of the hydrogen distributes over the specimen surface when it is electrochemically charged. For the round-type specimens, the notched specimen showed increased hydrogen susceptibility compared with the unnotched one. A notch causes stress concentration and thus generates lots of dislocations in the locally deformed regions during the SSRT test. The solute hydrogen weakens the interactions between these dislocations by promoting the shielding effect of stress fields, which is called hydrogen-enhanced localized plasticity mechanisms. These results provide crucial insights into the relationship between specimen geometry and hydrogen embrittlement resistance.