논문 상세보기

One‑shot synthesis of a nickel oxide/carbon composite electrocatalyst for a sensor capable of electrochemically detecting the antibiotic chloramphenicol in real samples KCI 등재

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/428107
구독 기관 인증 시 무료 이용이 가능합니다. 5,500원
Carbon Letters (Carbon letters)
한국탄소학회 (Korean Carbon Society)
초록

In this study platform, electrocatalytic detection of the antibiotic chloramphenicol (CAP) in phosphate buffer (pH 7) was easily achieved using a carbon paste electrode modified with NiO nanoparticles (note NiO-CPE). The peak reduction potential of chloramphenicol on the modified electrode is at (− 0.60 V/NiO-CPE vs. Ag/AgCl), its electrochemical behavior is completely irreversible, and controlled by adsorption phenomena. An excellent electrocatalytic activity has been demonstrated by the modified elaborated electrode towards the NO2 attracting group on the side chain of chloramphenicol. The structure and chemical composition of the NiO-CPE sensor were analyzed by SEM, and the X-ray diffraction results indicated that nickel oxide microcrystals were formed on the carbon sheets. The electrochemical characteristics of the NiO-CPE sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy in comparison with the unmodified carbon. Since the DPV technique allows plotting the linearity curve between the electrocatalytic current intensity of the Chloramphenicol peak and their concentration, the proposed sensor showed a remarkable detection limit of 1.08 × 10– 8 mol/L M (S/N = 3) and a wide determination range from 100 to 0.1 μM for Chloramphenicol. The developed sensor was successfully applied in the detection of Chloramphenicol in real samples.

목차
One-shot synthesis of a nickel oxidecarbon composite electrocatalyst for a sensor capable of electrochemically detecting the antibiotic chloramphenicol in real samples
    Abstract
    1 Introdution
    2 Experimental
        2.1 Apparatus
        2.2 Reagent and solution
        2.3 Preparation of the NiO & CPE
        2.4 Analytical procedure
    3 Results and discussion
        3.1 Optimization of the %NiO & CG
        3.2 Optimization of calcinations temperature
        3.3 Characterization of Ni & CPE
            3.3.1 SEM and EDX for NiO-CPE modified and CPE unmodified
            3.3.2 X-ray diffraction of NiO-CPE modified and CPE unmodified
        3.4 Electrochemical behaviors of chloramphenicol at NiO-CPE
            3.4.1 Electrocatalytic reduction of chloramphenicol at NiO-CPE and CPE unmodified
            3.4.2 Comparison between NiO-CPE fabrique and CPE using cyclic voltammetry
            3.4.3 Comparison between NiO-CPE and CPE by using impedance spectroscopy
            3.4.4 Comparison between NiO-CPE and CPE by using chronocoulometry
        3.5 Effect of scan rate
        3.6 Effect of an accumulation time
        3.7 pH study of the supporting electrolyte
        3.8 Interference
        3.9 Reproducibility, repeatability and stability of 20% NiO-CPE
    4 Analytical application
        4.1 Calibration curve and detection limit
        4.2 Application
    5 Conclusions
    References
저자
  • Ali Assabbane(Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco)
  • Samir Qourzal(Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco)
  • Malika Tamimi(Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco)
  • Idriss Bakas(Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco)
  • Chaimae Radaa(Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco)
  • Jallal Zoubir(Team of Catalysis and Environment, Faculty of Sciences, Ibn Zohr University, BP 8106, Agadir, Morocco)