논문 상세보기

The Analysis of Major Priliferation Resistance Barriers in the Dry-processing of Spent Fuels for an Efficient Final Disposal

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/429787
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

There are highly toxic radio-isotopes and high heat emitting isotopes in spent nuclear fuels which could be a burden in a deep geological repository. Some preliminary study in order to see if there are some advantages in terms of waste burden, in case that the spent fuel is appropriately processed and then disposed of in a final repository, has been carried out at KAERI. This study is focused on the proliferation resistance for various processing alternatives for them. The evaluation criteria and their indicators for proliferation resistance analysis are selected and then evaluated quantitatively or quantitatively for the alternatives. The processing alternatives are grouped into three categories according to the level of decrease of burden for final disposal and named them as Level I, Level II and Level III technolgy alternatives. Level I alternative is to maximize the long-term safety in the final repository from the removal of I- 129, semi-volatile radioisotope, which is the greatest impact on the long-term safety of the repository. Level II alternative is to remove the strontium-90, high heat emitter, in addition to the removal in Level I. The Level III is to additionally remove uranium from main stream of the level II to reduce the volume of the high level wastes to be disposed. The intrinsic radiation and chemical barriers against the nuclear proliferation are selected and analyised for the alternatives. It is resulted from the proliferation resistance analysis that all three options showed excellent resistance to nuclear proliferation for the two barriers. However, Level III technology including electrochemical refining process is relatively a little weaker than others. Overall, it could be an effective means to reduce the burden of disposal if the spent fuels are appropriately conditioned for final disposal. Further detailed studies are, however, needed to finalize its feasibility.

저자
  • Won Il Ko(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Hyo On Nam(Korea Atomic Energy Research Institute (KAERI))
  • Yung-Jun Cho(Korea Atomic Energy Research Institute (KAERI))