논문 상세보기

Spent Fuel Characteristics of Small Modular Reactors and Its Management Implications

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/429814
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Since SMR’s reduced reactor radius results in higher neutron leakage, SMR operates at a relatively lower discharge burnup level than traditional Light Water Reactors (LWRs). It may result in larger spent fuel amounts for SMRs. Furthermore, recent studies demonstrated that NuScale reactor will generate a significantly higher volume of low- and intermediate-level waste owing to components located near the active core including the core barrel and the neutron reflector. For spent nuclear fuel simulation, FRAPCON-4.0 was updated. Major modifications were made for fission and decay gas release, pellet swelling, cladding creep, axial temperature distribution, corrosion, and extended simulation time covering from steady-state to dry storage. In this study, typical 17×17 PWR fuel (60 MWd/kgU) and NuScale Power Module (36 MWd/kgU) was compared. NuFuel-HTP2™ fuel assembly, which has a half-length of proven LWR fuel, was employed. Owing to the lower discharge burnup and operating temperature, the maximum hydrogen pickup was 73 wppm and the maximum hoop stress was ~25 MPa. Therefore, hydride reorientation issue is irrelevant to SMR spent fuel. In this context, the current regulatory limit for dry storage (i.e. 400°C and 90 MPa) can be significantly alleviated for LWR-based SMRs. The increased safety margin for SMR spent fuel may compensate high spent fuel management cost of SMRs incurred by an increased amount. The comprehensive analysis on SMR spent fuel management implications are discussed based on simulated SMR fuel characteristics.

저자
  • Dahyeon Woo(Seoul National University (SNU))
  • Chansoo Lee(Seoul National University (SNU))
  • Youho Lee(Seoul National University (SNU)) Corresponding author