Time-resolved laser fluorescence spectroscopy (TRLFS) and excitation-emission matrix (EEM) spectroscopy were used to study the interaction of U(VI) and natural organic matters (NOMs) in groundwater. Various types of groundwaters (DB-1, DB-3 from KURT site and OB-1, OB-3 from a U deposit in Ogcheon metamorphic belt) were used as samples. Pulsed Nd-YAG laser at 266 nm (Continuum Minilite) was used as the light source of TRLFS. The laser pulse energy of 1.0 mJ was fixed for all measurements. The luminescence spectrum was recorded using a gated intensified chargecoupled device (Andor, DH-720/18U03 iStar 720D) attached to the spectrograph (Andor, SR-303i). EEM spectra were measured using a spectrofluorometer (Horiba Scientific, Aqualog) equipped with a 150 W ozone-free xenon arc lamp. Excitation spectra were recorded by scanning the excitation wavelength from 200 to 500 nm. Emission spectra were measured using a CCD in the wavelength range of 242–823 nm. In the case of the recently collected DB-1 samples, it was observed that the U and NOM quantities decreased compared to the samples collected before 2016. For some DB-1 samples, the amount of dissolved organic carbon indicating the presence of NOM was significantly reduced, and changes consistent with this phenomenon were observed in the EEM spectrum. The time-resolved luminescence characteristics (peak wavelengths and lifetime) of U(VI) in the DB-1 samples agree well with those of Ca2UO2(CO3)3(aq). This U(VI) species remains stable, even in samples taken five years ago. The estimated amounts of U and NOM from the spectroscopic data of DB-3, OB-1, and OB-3 samples are relatively low compared to DB-1 samples. When a known amount of U(VI) was mixed in each groundwater, the time-resolved luminescence spectrum exhibited a characteristic spectral shape different from the expected luminescence intensity. This phenomenon is presumed to be due to the interaction between U(VI) and NOM in groundwater. The results of this study suggest that the chemical speciation of NOM as well as U(VI) is required to understand U behavior in groundwater.