Disposal methods of radioactive waste can be mainly divided into near-surface disposal and deep geological disposal. If the radioactive waste is exposed to groundwater for a long time in the disposal environment, no matter how the decommissioning waste generated from the nuclear power plant is disposed of, the radionuclides may be released from the disposal site. Decommissioning waste from nuclear power plant contains radionuclides that are harmful to ecosystem including humans. Radionuclides released from disposal site behave in a complex and sensitive manner affected by geochemical conditions such as soil, geological media and groundwater. Sorption is one of the important mechanisms to retard the migration of radionuclides in a subsurface environment. In this study, geochemical properties of groundwater were collected and analyzed in the disposal environment considering disposal method in order to evaluate the geochemical behavior of radionuclides. The formation of aqueous and precipitated species of cesium and cobalt in a disposal condition were calculated and estimated. The sorption properties were also evaluated and predicted by considering the changes in the geochemical conditions such as pH, redox potential and geological media for the safety assessment.