논문 상세보기

An Efficient Thermal Management Method of Decay Heat in a Disposal Container for Deep Geological Disposal

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/429937
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Currently, the most widely accepted disposal concept for long-term isolation of high level radioactive waste including spent nuclear fuels is to disposal in a deep geological repository designed and constructed with multiple barriers composed of engineered and natural barriers so that the waste can be completely isolated in a stable deep geological environment. In this concept, an important consideration is the heat generated from the waste due to the large amount of fission products present in the high level waste loaded in the disposal container. For safe and complete isolation of high level radioactive waste in the deep geology, the disposal concepts that meet the thermal requirements for the disposal system design have been developed by harmonizing the thermal characteristics of engineered and natural barriers in Korea. In this paper, the deposition hole configuration and the decay heat dissipation area (surface area) of disposal container were considered for the efficient thermal management in the deep geological disposal concept. Heat transfer through the waste form, its container and surrounding components and the rock will be mainly by conduction. Heat transfer by radiation and convection can be negligible after backfilling. When considering heat conduction, according to Fourier’s law, if the thermal conductivity of the repository components is the same, the greater the heat dissipation area and the adjacent temperature gradient, the greater the conduction effect. Therefore, rather than the conventional concept of loading 4 PWR spent fuel assemblies per disposal container and placing one disposal container in a deposition hole, it is better to load one assembly per disposal container and place 4 disposal containers in a deposition hole. In this case, it was found that the disposal area could be reduced through efficient thermal management. Considering this thermal management method as an alternative to the concept of deep geological disposal, additional research is needed.

저자
  • Jongyoul Lee(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Heuijoo Choi(Korea Atomic Energy Research Institute (KAERI))
  • Dongkeun Cho(Korea Atomic Energy Research Institute (KAERI))