논문 상세보기

The Effect of Isosaccharinic Acid (ISA) on the Solubility of Rhenium(IV) Oxide

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/429962
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Technetium (Tc) is a long-lived radioactive isotope, which exists as TcO4 - with high solubility under oxidative condition. The solubility of Tc is fundamental to assess the safety of radioactive waste repository in the case of a leakage of radioactive wastes. Cellulosic materials (paper, wood, cotton, etc.) contaminated by radionuclides are disposed of in low-level and intermediate-level radioactive waste repositories. Cellulose can be decomposed under anaerobic and alkaline conditions when cement pore water is saturated, and then isosaccharinic acid (ISA) is generated as a degradation product of cellulose. ISA forms complexations with radionuclides in solution and affects the solubilities of radionuclides. Therefore, the effect of ISA should be accurately evaluated to predict and assess the mobility of radionuclides in repository environments. In this study, batch tests were conducted to confirm the effect of ISA on the solubility of Rhenium(IV) Oxide. Herein, rhenium was used as a non-radioactive analog of Tc due to their similar chemical properties. Deionized water (DIW) and 0.1 M NaOH solution in pH 12.5 were used as background solutions, and ISA concentration was varied to 1~20 mM using Ca(ISA)2 and NaISA, respectively. The batch tests were conducted under both aerobic and anaerobic conditions. The whole batch tests under anaerobic conditions were performed in the glove box using oxygen purged DIW with a high purity nitrogen gas (99.9%) and low oxygen concentration (< 0.5 ppm). As a result, the rhenium concentration decreases as more ISA is dissolved in the solution, which shows the contrary effect of ISA on the solubility of other metals and radionuclides (e.g., Co, Th, Fe, Ni, etc.). It is assumed that the reducing capacity of ISA decreases the rhenium dissolution in the solution. Additional characterization of the oxidation state of rhenium oxide and the mechanism will be tested and presented.

저자
  • Kyungwon Kim(Pohang University of Science and Technology (POSTECH))
  • Wooyong Um(Pohang University of Science and Technology (POSTECH)) Corresponding author