논문 상세보기

An Overview of the Revision History of Assessment Methodology of Radioactive Source Term for Normal Operation of Light Water Reactors

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430027
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

In Korea, the NUREG-0017 methodology based on realistic model for reactor coolant concentrations are used to estimate the annual radioactive effluent releases for normal operation of nuclear power plant. The realistic model to estimate the radionuclide concentrations in reactor coolant is formulated as a standard, ANSI/ANS-18.1. This standard has provided a set of the reference radionuclide concentrations and adjustment factors for estimating the radioactivity in the principal fluid systems of target plant. Since ANSI/ANS-18.1 was first published in 1976, it was revised in 1984, 1999, 2016, and most recently in 2020. Therefore, this study analyzed revision history of assessment methodology of radioactive source term of light water reactors, which is ANSI/ANS-18.1. Assessment methodology of radioactive source term given ANSI/ANS-18.1 is by using radionuclide concentrations for reactor coolant and steam generator fluid of the reference plant and adjustment factors, which is modifying radioactive source term according to differences in design parameters between reference plant and target plant. There are three type of reference plant: PWR with u-tube steam generator, PWR with once-through steam generator, and BWR. This study analyzed for PWR with u-tube steam generator. Although the standard was revised, evaluation methodology and formula of adjustment factor have been retained, but some of items have been revised. First revision item is reduction of the number of radionuclides and decrease of radioactive concentration in reactor coolant. In the 1976 version of the standard, there were 71 target radionuclides, but the target nuclides have reduced to 57 in 1984 and 56 after 1999. In the case of radioactive concentration in reactor coolant, as the version of standard was updated, the radioactive concentration of 18 nuclides in 1984, 14 nuclides in 1999, and 25 radionuclides in 2016 was decreased. Most of the radionuclides with decrease radioactivity concentration were fission product, it is resulted from improvement of nuclear fuel performance. Second revision item is change of adjustment factors. After the revision in 2016, the adjustment factors for zinc addition plants using natural or depleted zinc are changed. This study analyzed revision history of evaluation methodology of radioactive source term of light water reactors. Furthermore, result of this study will be contributed to the improvement of understanding of assessment methodology and revision history for the radioactive source term.

저자
  • Ji-Young Song(Korea Institute of Nuclear Safety (KINS)) Corresponding author
  • Kwan-Hee Lee(Korea Institute of Nuclear Safety (KINS))