The decommissioning of nuclear-related facilities at the end of their design life generates various types of radioactive waste. Therefore, the research on appropriate disposal methods according to the form of radioactive waste is needed. This study is about the solidification of uranium contaminated soils that may occur on the site of nuclear facilities. A large amount of radioactively contaminated soil waste was generated during the decommissioning of the uranium conversion plant in KAERI, and research on the proper disposal of this waste has been actively conducted. Numerous minerals in the soil can become glass-ceramic through the phase change of minerals during the sintering process. This method is effective in reducing the volume of waste and the glassceramic waste form has excellent mechanical strength and leaching resistance. In this study, the optimum temperature and time conditions were established for the production of glass-ceramic sintered body of soil. The compressive strength and leachability of the sintered body made by applying the optimal conditions to simulated waste was confirmed. The basic physicochemical properties of simulated soil waste were identified by measuring the pH, moisture content, density, and organic matter content. The elemental compositions in the soil was confirmed by XRF. Soils were classified by particle size, and each sample was compressed with a pressure of 150 MPa or more to prepare a green body. Based on the TG-DSC analysis, an appropriate heating temperature was set (>1,000°C), and the green body was maintained in a muffle furnace for 2~6 hours. The optimal sintering conditions were selected by measuring the compressive strength and volume reduction efficiency of the sintered body for each condition. The difference between the green body and sintered body was observed by XRD and SEM. In the experiments for evaluation of additives, the selected chemical substances were mixed with the soil sample in a rotator. Based on the results of TG-DSC, sintered body was made at 850°C, and the compressive strength and volume reduction were compared. Based on the results, the most effective additive was determined, and the appropriate ratio of the additive was found by adjusting the range of 1~5 wt%. This study was confirmed that the sintered soil waste showed sufficient stability to meet the disposal criteria and effective volume reduction for final disposal.