논문 상세보기

Evaluation of Dose to Public Due to Hypothetical Events During Dismantling of Steam Generator

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430122
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Kori Unit 1, Korea’s first commercial nuclear power plant is preparing to dismantle after 40 years of power supply. However, unlike the public dose assessment for nuclear power plants in operation, the dose assessment for the public due to abnormal events during the decommissioning of nuclear power plants is insufficient. Therefore, in this study, the steam generator chamber is selected as hypothetical events target among metal waste, which is a major radioactive material generated during the decommissioning of nuclear power plant. In addition, the possible abnormal event scenarios and effective does to public in the Exclusion Area Boundary due to the released radioactive materials are predicted during the disassembly and transportation of the steam generator. For the source term that can be released during the dismantling of the steam generator, the inventory of each radionuclide is evaluated based on the smear test results of the steam generator replaced in Kori Unit 1 in 1998. To evaluate the diffusion of radioactive material, the atmospheric dispersion factor (χ/Q, sec/m3) is calculated through the PAVAN code of the US NRC using the meteorological data of the Kori nuclear power plant for 3 years from 2019 to 2021 according to IAEA recommendations. For the assessment of the public dose, the external dose coefficient and inhalation coefficient of the ICRP and the inhalation rate of the NRC Regulatory Guide 1.3 are referred. It is confirmed that the effective dose to the public in the Exclusion Area Boundary due to the abnormal event during the dismantling of the steam generator is much lower than the effective dose standard value of 250 mSv for 2 hours after the event in the Exclusion Area Boundary.

저자
  • Kyeong Ju Lee(Kepco International Nuclear Graduate School (KINGS)) Corresponding author
  • Chang Lak Kim(Kepco International Nuclear Graduate School (KINGS))