논문 상세보기

Review on the Evaluation Methodology of Radioactive Source Term for Normal Operation of NuScale SMR

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430150
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Radioactive source terms are important factor in design, licensing and operation of SMR (Small Modular Reactor). In this study, regulatory requirements and evaluation methodology for normal operation on NuScale SMR, which received standard design certification approval on September 11, 2020 from US NRC, are reviewed. The radioactive waste management system of nuclear power reactor should be designed to limit radionuclide concentration in effluents and keep radioactive effluents at restricted area boundary ALARA according to 10 CFR 20 and 10 CFR 50 Appendix I. Also, in general, the coolant source term to calculate the off-site radiological consequences for normal operation of SMR should be determined by using models and parameters that are consistent with regulatory guide 1.112, NUREG- 0017 and the guidance provided in ANSI/ANS-18.1-1999, and the result should be corrected by reflecting the design characteristics of SMR. The coolant source term of NuScale, unlike the case of large NPPs, cannot rely solely on empirical source term data, because the NuScale source term is based on first principle physics, operational experience from recent industry, and lessons learned from large PWR operation. Fission products in reactor coolant are conservatively calculated using first principle physics in SCALE Code assuming 60 GWD/MTU. The release of fission products from fuel to primary coolant based on industry operational experience is determined as fuel failure fraction of 0.0066% for normal operation source term and 0.066% for design basis source term while coolant source term of large NPP is calculated by using ANSI/ANS-18.1 for normal operation and fuel failure fraction of 1% for design basis source term. Water activation products in reactor coolant are calculated from first principles physics and corrosion activation products are calculated by utilizing current large PWR operating data (ANSI/ANS 18.1- 1999) and adjusted to NuScale plant parameters. Also, because ANSI/ANS 18.1-1999 is not based on first principle physics models for CRUD generation, buildup, transport, plate-out, or solubility, NuScale has incorporated lessons learned by using ERPI’s primary water chemistry and steam generator guidelines to ensure source term is conservative and design of materials used cobalt reduction philosophy to help ensure the coolant source term are conservative. Based on the coolant source term calculated according to the above-described method, the annual releases of radioactive materials in gaseous and liquid effluents from NuScale reactor are evaluated. Currently, Small Modular Reactors such as ARA, SMART 100 are under review for licensing in Korea. This study will be helpful to understand how the reactor coolant system source terms are defined and evaluated for SMR.

저자
  • Ji-Young Song(Korea Institute of Nuclear Safety (KINS))
  • Gyeong-Mi Kim(Korea Institute of Nuclear Safety (KINS))
  • Su-Ji Yoon(Korea Institute of Nuclear Safety (KINS))
  • Ho-Jin Lee(Korea Institute of Nuclear Safety (KINS)) Corresponding author
  • Kwan-Hee Lee(Korea Institute of Nuclear Safety (KINS))