Though many treatment technologies of contaminated water have been developed for a long time, it is still difficult to find a suitable method for large volumes of low radioactivity tritium-contaminated water. For this reason, most of the tritium-contaminated water been discharged to the biosphere or been stored in a special control area as radioactive waste. Activated carbon is a common material, but since there are few data on the treatment of tritium-contaminated water, its adsorption behavior to HTO is worth studied. In our study, for the tritium-contaminated water having a low radioactivity concentration (350-480 Bq/g), adsorption experiments were performed with activated carbon. The effects on the selective adsorption of HTO were investigated for temperature (5-55°C), hydrogen peroxide (1-10wt%) and activated carbon reuse (1-6 times) under non-equilibrium conditions. The treatment of activated carbon significantly reduced the radioactivity of tritium-contaminated water around 60 minutes of adsorption time. In order to clearly analyze the experimental results, positive factors and negative factors on the HTO selectivity were separately evaluated according to the adsorption time. Temperature and the reuse of activated carbon were evaluated as negative factors for HTO selectivity of activated carbon, whereas hydrogen peroxide (> 5wt%) was evaluated as a positive factor. By the evaluation method of separating the influencing factors into two types, the adsorption experimental results of HTO could be understood more clearly.