논문 상세보기

Thermal Analysis of Single Spent Fuel Assembly Under Different Gas Backfills

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430746
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Spent nuclear fuels released from the reactor are stored in cooling pools and then stored in dry storage casks. During the transition from the wet storage to dry storage cask, a vacuum drying process is used to remove residual water in the cask. During the vacuum drying process, gas pressure is reduced to below 400 Pa to promote evaporation and water removal. KAERI is developing a PWR single assembly (PLUS7) test equipment to simulate the thermal flow in spent fuel assembly. In this study, the thermal conductivity of air at low pressure was derived to perform the thermal analysis of the canister in vacuum. In addition, thermal analyses were performed for the canister with backfill gases of helium, air, and a vacuum in the vertical orientation using the COBRA-SFS code. At low pressure, the thermal conductivity of air depends on pressure and temperature. The reduced thermal conductivity, kr (W/m-K) was calculated using the curve fit for air at reduced pressure in thin gaps presented in the General Electric Fluid Flow Handbook. 􀝇􀯥/􀝇􀬴 = 􀬵 􀬵􀬾 􀮼􀯍/􀯉􀰋 Where, k0 is the thermal conductivity at atmospheric pressure (W/m-K), P is the reduced (vacuum) pressure (Pa), δ is the gap size (m), T is the temperature (K), and C is the Lasance constant (7.657E-5 N/m-K). The thermal conductivity of air decreases as the pressure decreases. The reduced thermal conductivity of air at pressures of 400 Pa and 40 Pa was calculated to be 0.97 and 0.77, respectively. For the analysis in vacuum, no enhancement of the convective heat transfer was assumed (Nu=1.0). For the helium backfill, the peak cladding temperature was the lowest and the axial temperature profile was the flattest due to the higher thermal conductivity and lower density of the helium. For the vacuum backfill, the peak cladding temperature was the highest and temperature gradient was the sharpest due to the only radiative heat transfer effect in the fuel assembly.

저자
  • Ju-Chan Lee(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Doyun Kim(Korea Atomic Energy Research Institute (KAERI))
  • Seunghwan Yu(Korea Atomic Energy Research Institute (KAERI))