논문 상세보기

Burnishing Treatment to Prevent Chloride-Induced Stress Corrosion Cracking of Welded Canisters

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430751
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The spent fuel storage canister is generally made of austenitic stainless-steel and has the role of an important barrier to encapsulate spent fuels and radioactive materials. Canister near coastal area has welding lines, which have high residual tensile stresses after welding process. Interaction between austenitic stainless steel and chloride environment forms detrimental condition causing chloride induced stress corrosion cracking (CISCC) in canister. Reducing or eliminating tensile stress on canister can significantly decrease probability of crack initiation. Surface stress improvement works by inducing plastic strain which results in elastic relaxation that generates compressive stresses. Surface stress improvement methods such as burnishing process can effectively prevent for CISCC of canister surfaces. In this study, burnishing treatment has been evaluated to control residual tensile stress practically applicable to atmospheric CISCC for aging management of steel canisters. Burnishing process was selected as a prevention technology to CISCC of stainless steel canisters to improve resistance of CISCC through enhancement of surface roughness and generation of compressive residual stress. SUS 316 SAW (Submerged Arc Welding) specimens were burnished with flat roller and round roller after manufactured and assembled on CNC machine using base plate. The burnishing test results showed that the surface roughness of SUS 316 SAW welded specimens after roller burnishing of pass No. 5 was improved with 85% with flat roller and 93% with round roller, individually. Surface roughness showed the best state when burnished at pressure of 115 kgf, feeding rate of 40 m/stroke and pass No. of 5 turns with round roller. The surface of SUS 316 SAW welded specimens had much high residual compressive stress than yield stress of SUS 316 materials with roller burnishing treatment, independently of kinds of roller. The surface of the welded specimen by round roller burnishing showed smaller compressive stress and deeper stress region than in the surface of flat round roller burnishing. The roller burnished canister with good surface roughness could reduce the number of crack initiation sites and the high residual compressive stress formed on the welded surface might prevent the crack initiation by reducing or eliminating tensile residual stress in the weld zone, finally leads to excellent CISCC resistance. The crack growth behavior of SUS 316 welded specimens will need to investigate to evaluate the corrosion integrity of the canister materials under chloride atmosphere according to burnishing treatment.

저자
  • Ki-Hwan Kim(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Sang-Gyu Park(Korea Atomic Energy Research Institute (KAERI))
  • Yun-Young Yang(Korea Atomic Energy Research Institute (KAERI))
  • Sang-Soon Cho(Korea Atomic Energy Research Institute (KAERI))