논문 상세보기

Development of Dynamic Leak Rate Evaluation Methodology for Loss of Confinement of Spent Fuel Dry Storage Systems

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430763
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Since the time to consider when evaluating leakage of spent fuel dry storage systems is very long, assumptions that continue to leak at the initial leakage rate are too conservative. Therefore, this study developed a dynamic methodology to calculate the change in leakage rate using time-varying variables and apply it to calculate the amount of radioactive leakage during the evaluation period. The developed dynamic methodology was then applied to calculate the leakage radiation source term for a hypothetical dry storage system and used to perform a public dose assessment. When applying the developed dynamic leakage rate evaluation methodology for more accurate confinement evaluation in case of containment damage of dry storage system, it was found that the change of leak rate with time is very insignificant if the hole diameter is small enough, and the leak rate decreases rapidly with time when a hole with a certain diameter or larger occurs. In the case of the accident condition, except when the hole is very large, it corresponds to the chocked flow condition, and the leak rate decreases rapidly as soon as the internal pressure is sufficiently lowered to enter the molecular and continuum flow region. In the case of a small hole diameter, the leakage volume is very small, so even if the dynamic methodology is applied, the evaluation results are not different from the case where the initial leakage rate continues, and when the hole diameter exceeds a certain value, the internal pressure drops according to the leakage volume, and the leakage rate decreases significantly. As a result of evaluating the dose to residents by applying the calculated radiation source term, it was confirmed that the dose criteria was exceeded when a hole with a diameter of about 4 μm occurred under off-normal conditions, and the dose standard was exceeded under accident conditions when a chocked flow occurred between the diameter of the hole and 2-3 μm, resulting in a rapid increase in the dose. The results of this study are expected to contribute to a more accurate evaluation of the confinement performance of storage systems, which will contribute to the design of optimal dry storage systems.

저자
  • Siwan Noh(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Sang Soon Cho(Korea Atomic Energy Research Institute (KAERI))