논문 상세보기

Preliminary Data Analysis of Surrogate Spent Nuclear Fuel in Shake Table Tests to Simulate Normal Conditions of Road and Sea Transport

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430779
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Currently, the development of evaluation technology for vibration and shock loads transmitted to spent nuclear fuel and structural integrity of spent nuclear fuel under normal conditions of transport is progressing in Korea by the present authors. Road transportation tests using surrogate spent nuclear fuel were performed in September, 2020 using a test model of KORAD-21 transportation cask and sea transportation tests were conducted from September 30 to October 4, 2021. Finally, the shake table tests and rolling test were conducted from October 31 to November 2, 2022. The shake table test was performed with the input load produced conservatively from the data obtained from the road and sea transportation tests. The test input was produced based on the power spectral densities and shock response spectrums from the transportation tests. In addition to the test inputs from the road and sea tests, sine sweep input and half sine input were used to verify the vibration characteristics of assemblies under boundary conditions during normal conditions of transport. Because the input load of the shake table test was produced conservatively, a slightly larger strain than the strain value measured in road and sea transportation tests was measured from the shake table tests. In the case of the sea test, it is considered that the process of enveloping the data in the 20 to 80 Hz range generated by the engine propeller system was performed excessively conservatively. As a result of analyzing the test results for the difference in boundary conditions, it was confirmed that the test conditions of loading the basket generated a relatively large strain compared to the conditions of loading the disk assembly for the same input load. Therefore, it is concluded that a transportation cask having a structure in which a basket and a disk are separated, such as KORAD-21, is more advantageous in terms of vibration shock load characteristics under normal conditions of transport than a transportation cask having an integral internal structure in which a basket and a disk are a single unit. However, this effect will be insignificant because the load itself transmitted to the disk assembly is very small.

저자
  • JaeHoon Lim(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Woo-seok Choi(Korea Atomic Energy Research Institute (KAERI))