논문 상세보기

Preliminary Study of Chloride-Induced Stress Corrosion Cracking on the Welding Part of Canister Using DCPD Method

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430780
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

One of the options for spent fuel dry storage systems is to store them in canisters using metal or concrete casks close to shore. The interaction between the austenitic stainless steel and the chloride atmosphere generated from the sea creates detrimental conditions leading to chloride induced stress corrosion cracking (CISCC) in the canister. The corrosion integrity of the canister in the concrete cask is very important because the canister is sealed and used for a long period of time. A canister made of austenitic stainless steel has several welding lines on the wall and lid, which are generated during the welding process and have high residual tensile stress. The interaction between the austenitic stainless steel and the chloride atmosphere generated from the sea creates detrimental conditions leading to chloride induced stress corrosion cracking (CISCC) in the canister. The corrosion integrity of the canister in the concrete cask is very important because the canister is sealed and used for a long period of time. In order to evaluate such soundness, an accelerated test capable of simulating the CISCC crack propagation phenomenon of the canister weld is required. In this study, a test device for performing the CISCC simulation test was constructed using the DCPD device. The direct current potential drop (DCPD) technique is a widely accepted method of monitoring crack initiation and growth in controlled laboratory tests. In its simplest form it involves passing a constant current through the test piece and accurately measuring the electrical potential across the crack plane, and it is a suitable device to measure crack growth in real time. The requirements for the CISCC simulation test selected based on the literature search results include test material 316 L, load range 1.75YS, positive displacement load, and 7% MgCl2 concentration. In order to smoothly evaluate these various conditions, it was determined that it is advantageous to collect crack length data in real time using a DCPD device, rather than receiving and analyzing specimens maintained for a certain time in the chamber. Therefore, in this study, 4 types of test conditions in real time was built, and data collection on crack propagation could be performed in real time by using it.

저자
  • Sang-Gyu Park(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Ki-Hwan Kim(Korea Atomic Energy Research Institute (KAERI))
  • Sang-Soon Cho(Korea Atomic Energy Research Institute (KAERI))