논문 상세보기

A Geochemical Study on the Uranium Mobility in a Deep Geological Repository: A Natural Analogue Approach Using a Uranium Deposit in the Ogcheon Metamorphic Belt

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430799
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The mobility of uranium (U) in the environment of a deep geological repository is controlled by various geochemical conditions and parameters. In particular, oxidation state of uranium is considered as a major factor to control the mobility of uranium in most of geological environments. In this study, therefore, we investigated the mobility of uranium in a deep geological repository by a natural analogue approach using a uranium deposit in the Ogcheon Metamorphic Belt (OMB). Uranium contents of rock samples from the study site ranged from 1.3 to 71 ppm (average 17.4 ppm). Uranium minerals found in the study site were mostly uraninite (UIVO2+x) and uranothorite ((UIV, Th)SiO4). The concentrations of U in the groundwater samples were very low (0.025~0.690 ppb) even though redox conditions are weakly oxidizing. Calculation results for U speciation in groundwater samples showed that major dissolved uranium species in the groundwater samples are mainly as calcium uranyl (UO2 2+) carbonate complexes such as Ca2UO2(CO3)3(aq) and CaUO2(CO3)3 2-. However, the activity ratios between 234U and 238U (AR(234U/238U)) showed U behavior in reducing conditions although the groundwater conditions were not reducing conditions and major dissolved U species were U(VI) species. Results from electron microscopic analyses for rock samples showed that major uranium minerals were U(IV) minerals such as uraninite and uranothorite. We could not identify other uranyl minerals and altered minerals from uraninite. This means that the geochemical condition of the study site has been maintained a reducing condition although the groundwater condition was a weakly oxidizing condition. Thus, the dissolution of uranium is strongly limited by the low solubility of uraninite. It is not obvious how the reducing condition of the study site has been maintained. Reducing agents such as pyrite, organic materials, and reducing bacteria might contribute to maintaining the reducing condition although further studies will be necessary. Results from this study imply that uranium mobility will be greatly limited by low dissolution of uraninite into groundwater if the reducing condition is well reserved. This limited mobility of uranium will be also contributed by low possibility of uraninite alteration into uranyl minerals which have a higher solubility than uraninite.

저자
  • Min-Hoon Baik(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • YeoJin Ju(Korea Atomic Energy Research Institute (KAERI))
  • Dawoon Jeong(Korea Atomic Energy Research Institute (KAERI))
  • Ji-Hun Ryu(Korea Atomic Energy Research Institute (KAERI))