With the increasing demand for a repository to safely dispose of high-level radioactive waste (HLW), it is imperative to conduct a safety assessment for HLW disposal facilities for ensuring the permanent isolation of radionuclides. For this purpose, the Korea Atomic Energy Research Institute (KAERI) is currently developing the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro). A far-field module, which specifically focuses on fluid flow and radionuclide transport in the host rock, is one of several modules comprising APro. In Korea, crystalline rock is considered the host rock for deep geological disposal facilities due to its high thermal conductivity and extremely low permeability. However, the presence of complex fracture system in crystalline rock poses a significant challenge for managing fluid flow and nuclide transport. To address this challenge, KAERI is participating in DECOVALEX-2023 Task F1, which seeks to compare and verify modeling results using various levels of performance assessment models developed by each country for reference disposal systems. Through the benchmark problems suggested by DECOVALEX-2023 Task F1, KAERI adopts the Discrete Fracture-Matrix (DFM) as the primary fracture modeling approach. In this study, the transport processes of reactive tracers in fractured rock, modeled with DFM, are simulated. Specifically, three different tracers (conservative, decaying, adsorbing) are introduced through the fracture under identical injecting conditions. Thereafter, the breakthrough curves of each tracer are compared to observe the impact of reactive tracers on nuclide transport. The results of this study will contribute to a better understanding of nuclide behavior in subsurface fractured rock under various conditions.