논문 상세보기

Model Concept for Simulating Mechanical Behavior of Deep Geological Repository

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430839
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

For the performance analysis of deep geological repository systems, numerical simulation with multi-physics is required, which specifically covers Thermal (T), Hydraulic (H), and Mechanical (M) behaviors in the disposal environment. Numerous simulation models have been developed so far, each of which varies in the approach and methodology for solving THM problems. Fully-coupled THM simulation codes such as ROCMAS, THAMES, and CODE_BRIGHT were mainly developed in the initial stage of DEvelopment of COupled models and their VALidation against EXperiments (DECOVALEX), with the advantage of thorough calculations consisting of correlated several variables on different physics. Due to the difficulty of solving the complex Jacobian Matrix and the following burden for the computational calculation, weakly-coupled THM models have been suggested in recent researches: TOUGH2-MP with FLAC3D, TOUGH2 with UDEC and OpenGeoSys with FLAC3D. This methodology of loose coupling allows the practical use of computational code optimized for each physics, thereby increasing the efficiency in simulation. However, these suggested models require two different numerical codes to calculate THM behaviors, which leads to several inherent issues: compatibility during maintenance, updating and dependency between two codes. In this study, therefore, the authors build a unified code for simulating THM behaviors in the deep geological repository. The concept involves the iterative sequential coupling between TH and M for calculation efficiency. As having developed the simulation code, High-level rAdiowaste Disposal Evaluation System (HADES), to describe TH behavior based on Multi-physics Object-Oriented Simulation Environment (MOOSE) software, the authors make a milestone to develop and couple the MOOSE-based new code for M behavior as Sub-app, with the previous HADES set to be Main-app. New model for M behavior will be verified with the benchmark case of DECOVALEX-THMC Task D, comparing the mechanical simulation results: stress evolution over time, profiles of stress and vertical displacement. The existing simulation results from HADES will also be updated with the coupled calculations, with regard to temperature and saturation. Additionally, the effective stress evolution can be assessed in terms of repository’s stability with Spalling Strength and Mohr-Coulomb failure criterion. This concept for new simulation model has its meaning in that it aims to demonstrate the specific methodology of loosely coupling multi-physics in unified simulation code and analyze THM complex interactions with considering mutual influence on various physics. It is expected that HADES can be renewed as an integral simulation model for deep geological repository systems by possessing the capacity for analyzing and assessing mechanical behavior.

저자
  • Pilhyeon Ju(Seoul National University (SNU))
  • Nakkyu Chae(Seoul National University (SNU))
  • Samuel Park(Seoul National University (SNU))
  • Taehoon Park(Seoul National University (SNU))
  • Seongkoo Hong(Seoul National University (SNU))
  • Gyosoon Kim(Taesung S&E Inc.)
  • Yongmin Gwon(Taesung S&E Inc.)
  • Sungyeol Choi(Seoul National University (SNU)) Corresponding author