논문 상세보기

Thermal Treatment of Latex Gloves in a Closed Vessel for Waste Reduction

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431017
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Various dry actives wastes (e.g., gloves, wipers, shoes, clothes) are generated during operation and maintenance of nuclear facilities. Among those, latex gloves gets interest because they contain both organic and inorganic compounds. CaCO3 is a common filler material for production of latex rubbers. Here, latex gloves were thermally treated in a closed vessel to separate the organic and inorganic compounds. Using the closed vessel is beneficial as it can prevent escape of any species, including radioactive nuclides in a real case, generated during the treatment. It was found that thermal decomposition of latex gloves occurred above 250°C. Latex gloves were decomposed to gas, liquid, and solid compounds. The gas product is thought to be volatile organic compounds (VOCs). The liquid product seems to be a mixture of oils and water. A CaCO3 phase was identified in the solid product, as expected. The VOCs can be easily separated at room temperature by purging in vacuum or inert atmosphere. The liquid-solid mixture can be separated by distillation. It is thought that gammaemitting nuclides, such as Cs-137, Sr-90, and Co-60, dominantly remain in the solid product. In the best situation, the solid product is the only subject to be transferred to final wasteform fabrication stream and thus volume of final waste can be reduced. Surrogates of contaminated latex gloves (containing Cs, Sr, and Co) were prepared and they were treated at 350°C in the closed vessel. How these contaminants behaves in this thermal process will be discussed in the presentation.

저자
  • Sung-Wook Kim(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Maengkyo Oh(Korea Atomic Energy Research Institute (KAERI))
  • Min Ku Jeon(Korea Atomic Energy Research Institute (KAERI))