The physicochemical similarities of hydrogen isotopes have made their separation a challenging task. Conventional methods such as cryogenic distillation, Girdler sulfide process, chromatography, and thermal cycling absorption have low separation factors and are energy-intensive. To overcome these limitations, research has focused on kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS) effects for selective separation of hydrogen isotopes. Porous materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), zeolites, carbon, and organic cages have been studied for hydrogen separation. This study have the literature review for previous research on D2/H2 adsorption and analyzes the D2/H2 adsorption behaviors of hydrogen isotopes for various zeolite using BET at 77 K. The study predicts the D2/H2 adsorption selectivity based on the results obtained with BET. These hydrogen isotope adsorption fundamentals provide a foundation for future processes for tritium separation.