With the rapid growth of nuclear power in China, a large number of dry wastes, which mainly include the high efficiency particulate air filters (glass fiber), cotton, polyethylene, and absorbent paper with low-level radioactivity and high volume, will be produced during the operation and maintenance of the nuclear power plants. Thermal plasma treatment is a world acceptable technology to incinerate and immobilize radioactive wastes, owing to the high volume reduction factor and the excellent chemical durability of the vitrified waste form. China has developed thermal plasma technology for the treatment of dry wastes from nuclear power plants for more than 15 years and the pilot plant has been constructed. This work will concentrate on the formulation of waste glass fiber to adapt to the vitrification process. A three-component (glass fiber-CaO-Na2O) constrained-region mixture experiment was designed and their viscosity data was mainly studied. The quadratic Scheffé model was used to plot the component effect on melting temperature. The retentions of simulated nuclides, such as Co, Sr, and Cs in the glasses were analyzed. In addition, the glass fiber as a glass matrix to immobilize residual ashes from the thermal plasma gasification of cotton, polyethylene, and absorbent paper was investigated as well.