The increasing use of drones in terrorist attacks highlights the need for effective strategies to prevent and respond to drone terrorism. This study uses machine learning approach to identify factors that predict the success of drone terrorism and suggests policy alternatives for preventing such acts. Drone terrorism is becoming increasingly accessible due to advancements in information and communication technology, and events such as North Korea’s drone infiltration and the Russia-Ukraine war demonstrate the potential threat of drone attacks on Important National Facilities, including nuclear power plants. Using the Global Terrorism Database (GTD), this study analyzed drone terrorism incidents that occurred worldwide from 2016 to 2020. The study employed the Random Forest algorithm, which can incorporate multiple factors and their interactions, making it particularly suitable for social science research. The study provides new insights by deriving predictors that were previously overlooked in empirical analyses of drone terrorism. The findings of this study can aid in the establishment of anti-terrorism policies aimed at addressing the growing threat of drone terrorism. This can include the organization and expansion of the crisis management governance terrorism response council, the creation of a working manual through the partial revision of laws concerning drone terrorism response, and the implementation of anti-drone equipment and systems. Ultimately, the insights gained from this study can provide development of effective strategies aimed at preventing and responding to drone attacks. The study highlights the importance of proactive measures to mitigate the risks posed by drone technology in the context of terrorism.