Plutonium exhibits a variety of oxidation states and has a strong affinity for complexation with organic ligands. Isosaccharinic acid (ISA) is a major degradation product of cellulose materials present in the low to intermediate radioactive wastes. The interaction between trivalent plutonium and ISA can significantly impact the migration and containment of plutonium in the repository environment. In this study, formation of Pu(III) and ISA complexes was investigated at an ionic strength of 1 M of NaClO4 using UV-Vis absorption spectrophotometry. To exclude the effect of the Pu(III) oxidation, absorption spectra were measured within 10 min after adding ISA into Pu(III) solution and processed using HYPSPEC software for deconvolution after baseline correction. Several previous studies showed that the presence of ligands accelerates the oxidation of Pu(III) to Pu(IV). To investigate whether ISA complexation can also accelerate the Pu(III) oxidation, UV-Vis absorption spectra changes over 24 hours were analyzed as a function of the ratio of ISA to plutonium concentration.