Since 2007, diamide insecticides have been widely used in Korea to control various types of lepidopteran pests including Spodoptera exigua. For nearly a decade, diamide resistance in field populations of S. exigua across 18 localities has been monitored using bioassays. Based on the LC50 values, some field populations showed a high level of resistance against chlorantraniliprole, although regional and temporal variations were observed. To investigate resistance at a molecular level, mutations (Y4701C, I4790M, and G4946E) were examined in the ryanodine receptor (RyR), which is the primary mechanism underlying diamide insecticide resistance. As a result, only I4790M mutation was found in most of field populations. As resistance levels varied significantly despite the uniform presence of the I4790M mutation, we considered the presence of another resistance factor. Further, the I4790M mutation was also found in S. exigua specimens collected prior to the commercialization of diamide insecticides in Korea as well as in other countries, such as the USA. This finding led us to hypothesize that the I4790M mutation were predisposed in field populations owing to selection factors other than diamide use. For further clarification, we conducted whole-genome sequencing of S. exigua (449.83 Mb) and re-sequencing of 18 individuals. However, no additional non-synonymous mutations were detected in the RyR-coding region. Therefore, the high level of diamide insecticide resistance in Korean S. exigua is not caused by mutations at the target site, RyR, but is attributed to other factors that need to be investigated in future studies.