The foraging behavior of honey bees can be attributed to the nutritional incentives they gain from their activities. Nevertheless, a persistent question has revolved around how the nutritional composition undergoes alterations during the process of converting pollen into bee bread. We embarked on a comprehensive investigation of nutritional shifts, spanning from fresh pollen to bee-pollen, pollen patties, and bee bread. Our research findings unveiled that pollen exhibited notably higher levels of individual amino acids, resulting in significantly elevated overall amino acid content compared to bee-collected pollen. While we provided pollen patty to the honey bee colony, initially, during the first 3 to 7 days, there were no substantial discrepancies in the total amino acid content between bee bread and the pollen patty. Intriguingly, unlike most amino acids, we detected a distinct pattern of higher proline content in bee bread compared to bee-pollen or the pollen patty. This shift in amino acid composition likely stems from the incorporation of nectar and other secretions during the bee bread-making process. Moreover, over a span of approximately 14 days within hive conditions, the amino acid content in bee bread increased. Conversely, in terms of fatty acid contents, they were found to be lower in bee bread than those in the pollen patty, with no significant temporal differences observed. Regarding mineral content, bee bread, in general, contained fewer minerals than bee pollen and pollen patties. In conclusion, the transformation of pollen into bee bread involves dynamic alterations in nutrient contents, influenced by both intrinsic bee-related factors and external factors within the hive environment.