논문 상세보기

인공지능을 활용한 다중 결합 부유식 해상태양광 설비의 계류선 손상 위치 추정 알고리즘

The Algorithm for Estimating the Location of Damaged Mooring in Multi-Coupled Floating floating Photovoltaics Using Artificial Intelligence

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/432794
모든 회원에게 무료로 제공됩니다.
한국복합신소재구조학회 (Korean Society for Advanced Composite Structures)
초록

부유식 해상태양광 설비는 패널 지지를 위한 프레임 구조물, 구조체의 부력 제공을 위한 부유체와 전체 시스템의 거동을 제한하는 계류시설로 구성되어 있다. 계류시설은 구조물의 지지조건으로서의 역 할을 통해 안정적인 발전량 수급에 기여한다. 하지만 해당 시스템은 설치된 해상환경 특성상 계류선의 파단 및 손상 시 직접적인 탐지가 불가능해 유지관리에 어려움이 있다. 따라서 본 연구에서는 패널지 지 프레임 구조체에 가속도 센서 부착을 가정하여, 해당 센서 계측값을 토대로 계류설비에서 발생한 파단 및 손상이 발생한 위치를 추정하는 알고리즘을 개발하였다. 알고리즘은 비지도학습 인공지능의 일종인 오토인코더를 활용하여 가속도 계측값의 재현 과정을 통해 정상상태의 구조 응답을 학습한 모 델이 비정상상태의 계측값을 재현 시 발생한 오차를 통해 손상 발생 여부와 위치를 실시간 탐지하도 록 구성하였다. 정상상태 구조응답을 기반으로 한 모델의 학습을 위해 패널지지 구조체를 10x10 격자 형으로 결합한 다중 결합 시스템에 불규칙파랑을 환경하중으로 적용함을 통해 발생한 6자유도 가속도 데이터를 확보하였다. 계류시설의 손상 발생 시 주된 변화 인자 탐지를 위해 상관성 분석과 민감도 분 석을 실시하여 손상 위치 추정 알고리즘에 적용할 주요 인자를 선별하여 학습 및 추정 성능에 대한 비교 분석을 수행하였다. 구축된 알고리즘의 테스트를 위해 총 5개 종 손상 케이스 데이터셋을 구축하 여 손상 위치 추정 성능을 비교하였다. 본 연구를 통해 계류 시설에 발생한 손상 여부 및 위치를 추정 하여 부유식 해상태양광 설비의 선제적 유지관리에 기여할 수 있을 것으로 기대된다.

저자
  • 노윤학(고려대학교)
  • 송지훈(고려대학교)
  • 김승준(고려대학교) Corresponding author