RNA interference (RNAi) has been applied to control insect pests using gene silencing machinery in which small interfering RNA derived from dsRNA specifically degrades target mRNA. This study optimized dsRNA insecticide specific to thrips infecting hot peppers. Among potent candidate target genes, vATPase B was chosen because its RNAi was highly efficient as much as Snf7, a well-known RNAi target gene. Although RNAi specific vATPase B is lethal to Frankliniella occidentalis, it was not much effective to control other thrips species such as F. intonsa and Thrips tabaci. To expand its target spectrum, we devised a mixture treatment of dsRNA specific to individual species. As expected, each dsRNA was highly efficient in a species-specific manner. This supported the hypothesis of 21mer identity for the efficient RNAi. However, the dsRNA mixture efficiently killed the three thrips species in a crop field. To further expand its spectrum to the whitefly, Bemisia tabaci, we applied virus-induced gene silencing (VIGS) to produce dsRNA in the hot peppers using Tobacco Rattle Virus. VIGS successfully suppressed control gene. dsRNA produced by VIGS gave significnat mortality to B. tabaci in addition to the thrips. These results suggest a technique to expand dsRNA insecticide spectrum using a mixture treatment and VIGS in insect pest control_.