Behavioral modulation by genetic changes garners a special attention nowadays as an effective means of revealing genetic function on the one hand and broadening the scope of in situ monitoring on the other hand. The cGMP-dependent protein kinase was treated to the western flower thrips, Frankliniella occidentalis. Automatic recognition techniques and computational methods were utilized to investigate behavioral changes across photo- and scoto-phases. Movement behaviors are objectively expressed according to parameter extraction and data structure visualization in different light phases. By comapring with the individuals without treatment, activities of treated thrips were changed including decrease in circadian rhythm. Usefulness of automatic monitoring of insect movement in different genetic strains is further discussed for providing useful information on monitoring and diagnosing natural and unntatural genetic disturbances.