Transmission electron microscopy was used to examine the microscopic structural features and myofibril organization of cardiac muscle cells in the orb-web spider T. clavata. There are many myofibrils, many mitochondria, a large sarcoplasmic reticulum, and transverse tubules (T-tubules) in the muscle fibers, even if the myofibril striations may not be as noticeable as in skeletal muscles. Because of their consistent striations, sarcomeres are characterized by Z-lines that are 2.0 μm on average in length and do not clearly distinguish between the A- and I-bands. A single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum constitutes a dyadic junction, which is primarily located at the A-I level of sarcomeres. Cells are joined by intercalated discs, which create several linkages via specialized junctions such as desmosomes, gap junctions, and fascia adherens—all of which are essential for heart function. Our results with transmission electron microscopy (TEM) clearly show that the contraction of the spider's heart muscle is neurogenically controlled, since each fiber is innervated by a motor neuron branch via neuromuscular junctions. These results highlight the neurogenic process controlling spiders' cardiac muscle contractions and advance our knowledge of the peculiar cardiac muscle structure of these animals.