This study aims to analyze cooperative autonomous driving by integrating two advanced simulation tools, UC-WinRoad and VISSIM. Cooperative autonomous driving refers to the interaction of autonomous vehicles (AVs) with human-driven vehicles, infrastructure, and other road users within a dynamic traffic environment. The integration of UC-WinRoad’s realistic 3D visualization capabilities with VISSIM’s detailed microscopic traffic modeling enables the simulation of complex traffic scenarios, providing a comprehensive analysis of autonomous and connected vehicle behavior. The necessity of this study arises from the growing interest in autonomous driving technologies and the need for reliable tools to evaluate their performance and impact on real-world traffic systems. Simulations offer a safe and cost-effective environment to test AV behavior in various scenarios, including extreme or hazardous conditions that are difficult to replicate in the real world. This study also provides valuable insights into AV-infrastructure interactions, offering data-driven recommendations for policy and infrastructure planning. The outcomes of this research include the development of a methodology for linking UC-WinRoad and VISSIM, simulation results demonstrating potential improvements in traffic flow, safety, and efficiency through cooperative autonomous driving, and the identification of challenges in integrating AVs into existing traffic systems. This research contributes to the advancement of autonomous driving technologies by providing a robust framework for analyzing cooperative driving scenarios, supporting AV and human-driven systems ahead of the fully autonomous traffic systems of the future.