논문 상세보기

TabTransformer와 조건부 GAN 알고리즘을 활용한 우리나라 대졸자 취업 만족도 예측 모델의 개선을 위한 데이터 증강 기법 연구 KCI 등재

Applying TabTransformer and Conditional GAN Algorithms for Enhancing Job Satisfaction Prediction of South Korean College Graduates

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/437759
구독 기관 인증 시 무료 이용이 가능합니다. 4,300원
한국기계기술학회지 (Journal of the Korean Society of Mechanical Technology)
한국기계기술학회 (Korean Society of Mechanical Technology)
초록

This study integrates TabTransformer and CTGAN for predicting job satisfaction among South Korean college graduates. TabTransformer handles complex tabular data relationships with self-attention, while CTGAN generates high-quality synthetic samples. The combined approach achieves an accuracy of 0.85, precision of 0.83, recall of 0.82, F1-score of 0.82, and an AUC of 0.88. Cross-validation confirms the model's robustness and generalizability with a mean accuracy of 0.85 and a standard deviation of 0.008. The integration of TabTransformer and CTGAN enhances predictive accuracy and model generalizability, providing valuable insights for employment policy and research.

목차
Abstract
1. Introduction
2. Related works
3. Materials and Methods
    3.1. Data Preparation
    3.2. Feature Extraction using TabTransformer
    3.3. Data Augmentation using CTGAN
    3.4. Model Training with Augmented Data
    3.5. Final Classification Model Constructionand Evaluation
    3.6. Dataset
4. Results and PerformanceEvaluation
    4.1. Experimental Setup
    4.2 Evaluation Metrics
    4.3. Experimental Results
    4.4. Accuracy
    4.5. Precision
    4.6. Recall
    4.7. F1-score
    4.8. Area Under the ROC Curve (AUC)
    4.9. Cross-Validation
5. Discussion
6. Conclusions
References
저자
  • 변해원(Department of AI-Software, Inje University, South Korea) | Haewon Byeon Corresponding author