논문 상세보기

고용 빅데이터에서 결과 변수의 계층 불균형 문제를 해결하기 위한 조건부 표 형식의 생성적 적대적 네트워크(GAN)의 응용 KCI 등재

Application of Conditional Tabular Generative Adversarial Networks (GAN) for Addressing Class Imbalance in Nationwide Employment Big Data

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/437772
구독 기관 인증 시 무료 이용이 가능합니다. 4,900원
한국기계기술학회지 (Journal of the Korean Society of Mechanical Technology)
한국기계기술학회 (Korean Society of Mechanical Technology)
초록

This study investigates using Conditional Tabular Generative Adversarial Networks (CT-GAN) to generate synthetic data for turnover prediction in large employment datasets. The effectiveness of CT-GAN is compared with Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over-sampling Technique (SMOTE), and Random Oversampling (ROS) using Logistic Regression (LR), Linear Discriminant Analysis (LDA), Random Forest (RF), and Extreme Learning Machines (ELM), evaluated with AUC and F1-scores. Results show that GAN-based techniques, especially CT-GAN, outperform traditional methods in addressing data imbalance, highlighting the need for advanced oversampling methods to improve classification accuracy in imbalanced datasets.

목차
Abstract
1. Introduction
2. Related works
3. Materials and Methods
    3.1. Imbalance Ratio (IR)
    3.2. Random Oversampling (ROS)
    3.3. Synthetic Minority Over-SamplingTechnique (SMOTE)
    3.4. B-SMOTE
    3.5. Adaptive Synthetic Sampling (ADASYN)
    3.6. Conditional GAN (CGAN)
    3.7. Conditional Tabular GAN (CT-GAN)
    3.8. Modeling
    3.9. Data source
    3.10. Experimental design
    3.11. Performance Evaluation Methods andMetrics
4. Results
5. Discussion
6. Conclusions
References
저자
  • 변해원(Department of AI-Software, Inje University, South Korea.) | Haewon Byeon Corresponding author