3D printing using ceramic powder to produce precision ceramic parts has been studied with various additive manufacturing methods. This study analyzed problems occurring in alumina additive manufacturing that uses digital light processing (DLP) as well as methods to address such problems. For efficient analysis, we have classified alumina additive manufacturing into three types according to the driving method of the build platform - lifting type (LT), tilting type (TT) of the vat, and blade movement type (BT). LT had a problem with detachment and cracking of the alumina green body. However, this could be prevented by carefully controlling the cure depth of the suspension slurry and the bonding force between layers and improving the material used for coating the vat. TT, which resulted in non-uniform alumina additive manufacturing, could be improved by modifying the bidirectionality of the axis and the fluidity of the highly viscous alumina suspension slurry. BT resulted in detachment of the specimen as well as non-uniform results, but this could be avoided by shortening the shifting distance of the alumina suspension when it is introduced to the build platform, and enabling effective spreading.