Research Methods Utilizing Materials Informatics and Molecular Dynamics for the Development of Road-Pavement Materials (II): Material Research Trends Using Artificial Intelligence Technology
This paper explores a convergent approach that combines advanced informatics and computational science to develop road-paving materials. It also analyzes research trends that apply artificial-intelligence technologies to propose research directions for developing new materials and optimizing them for road pavements. This paper reviews various research trends in material design and development, including studies on materials and substances, quantitative structure–activity/property relationship (QSAR/QSPR) research, molecular data, and descriptors, and their applications in the fields of biomedicine, composite materials, and road-construction materials. Data representation is crucial for applying deep learning to construction-material data. Moreover, selecting significant variables for training is important, and the importance of these variables can be evaluated using Pearson’s correlation coefficients or ensemble techniques. In selecting training data and applying appropriate prediction models, the author intends to conduct future research on property prediction and apply string-based representations and generative adversarial networks (GANs). The convergence of artificial intelligence and computational science has enabled transformative changes in the field of material development, contributing significantly to enhancing the performance of road-paving materials. The future impacts of discovering new materials and optimizing research outcomes are highly anticipated.