This study investigated the tracking loss rate and shear bond strength under various conditions to evaluate the properties of a trackless tack coat used in asphalt pavement maintenance and conducted a field investigation in which the trackless tack coat was used. Typically, the loss rate and bond strength of a tack coat depend on various conditions. Therefore, to evaluate the loss rate of the tack coat, a wheel-tracking attachment loss rate and tack lifter test were conducted by simulating high-temperature exposure conditions, and the shear bond strength was measured according to the surface condition of the bottom layer. In addition, field investigations of cracks, rutting, and potholes were conducted at 11 sites five years after the application of the trackless tack coat. The results of the wheel-tracking loss rate evaluation showed that the loss rate differed depending on the conditions of the bottom layer, and the loss rate of the trackless tack coat was very low at the same temperature as that of the rapid strength concrete (RSC). In addition, in the results of tack lifter test at 65℃, which had the highest loss rate by wheel tracking loss rate test, it was found that loss rate of trackless tack coat was 0%–29% lower than that of RSC for the same exposure time. As a result of evaluating the effect of the bottom layer's condition on the shear bond strength, it was found that the trackless tack coat was about 20% higher than RSC under the same conditions. In addition, when foreign substances such as dust were present in the bottom layer, the shear bond strength was reduced by approximately 28%. Field investigations of the trackless-applied section showed that potholes and rutting did not occur, and alligator cracks and linear cracks occurred in some sections; however, it was judged that there was little direct relationship with the trackless tack coat. The trackless tack coat was found to have a slight loss owing to tracking, even at relatively high temperatures, and the shear bond strength was excellent. In addition, if the construction process is properly conducted, an advantage will be attained in securing the performance life of asphalt pavements.