다중구역 제조시스템을 위한 에이전트 기반 디스패칭 시스템
Recently, in the manufacturing industry, changes in various environmental conditions and constraints appear rapidly. At this time, a dispatching system that allocates work to resources at an appropriate time plays an important role in improving the speed or quality of production. In general, a rule-based static dispatching method has been widely used. However, this static approach to a dynamic production environment with uncertainty leads to several challenges, including decreased productivity, delayed delivery, and lower operating rates, etc. Therefore, a dynamic dispatching method is needed to address these challenges. This study aims to develop a reinforcement learning-based dynamic dispatching system, in which dispatching agents learn optimal dispatching rules for given environmental states. The state space represents various information such as WIP(work-in-process) and inventory levels, order status, machine status, and process status. A dispatching agent selects an optimal dispatching rule that considers multiple objectives of minimizing total tardiness and minimizing the number of setups at the same time. In particular, this study targets a multi-area manufacturing system consisting of a flow-shop area and a cellular-shop area. Thus, in addition to the dispatching agent that manages inputs to the flow-shop, a dispatching agent that manages transfers from the flow-shop to the cellular-shop is also developed. These two agents interact closely with each other. In this study, an agent-based dispatching system is developed and the performance is verified by comparing the system proposed in this study with the existing static dispatching method.