This review paper provides a comprehensive analysis of the measurement and distribution of microplastics in the atmosphere and their role in the adsorption and transport of organic and inorganic pollutants. Due to their small size, large surface area, and hydrophobic nature, microplastics can adsorb a wide range of pollutants, including volatile organic compounds (VOCs) and heavy metals. These pollutants, strongly bound to the surface of microplastics, can remain suspended in the atmosphere for extended periods, facilitating the widespread distribution of contaminants. Building on existing research, this paper systematically reviews the sampling, pretreatment, and analytical methodologies applied to study microplastics in the air. Furthermore, it examines the influence of environmental factors on the adsorption and desorption dynamics of pollutants associated with microplastics. Various studies indicate that microplastics can interact with pollutants such as heavy metals, organic compounds, and microorganisms to form complex contaminants. These complexes can be transported and redistributed across long distances in the atmosphere, amplifying their environmental and health impacts. This review highlights that microplastics are not merely a pollutant themselves but serve as a vehicle for the migration and dispersion of other contaminants. This dual role emphasizes the significant risks microplastics pose to public health and the environment, necessitating further research and effective mitigation strategies.