This study analyzed the epilithic diatom community and ecological health of freshwater streams using environmental DNA (eDNA)-based metabarcoding technology. eDNA metabarcoding is a method that analyzes biological communities by performing PCR amplification followed by next-generation sequencing (NGS), offering higher sensitivity and faster results compared to traditional microscopic analyses. The study compared the eDNA metabarcoding results of ribulose bisphosphate carboxylase large chain gene (rbcL) targeting epilithic diatoms according to Taq polymerases (SuperFi II, GainBlue, EzPCR, and AccuPower). SuperFi II and GainBlue yielded the highest number of reads and zOTUs, with GainBlue showing particularly uniform read distribution, allowing for more accurate analysis for community diversity of epilithic diatoms. On the other hand, EzPCR and AccuPower exhibited lower number of reads and zOTUs, making them less suitable for the community diversity. In terms of community similarity analysis, SuperFi II and GainBlue produced highly similar results, while EzPCR and AccuPower showed significant differences. This study demonstrates that PCR Taq polymerases significantly influence community diversity and similarity analyses of epilithic diatoms, with GainBlue providing the most stable and accurate results. Our findings serve as a valuable foundation for improving the accuracy of eDNA-based metabarcoding analyses of diatoms.