In this study, we propose an adaptive traffic control method that utilizes predictions of near-future traffic arrivals at a signalized intersection based on real-time data collected at an upstream intersection to design acyclic traffic signal timing accordingly. The proposed adaptive control method utilizes a deep learning model developed in this study to predict future traffic arrivals at downstream intersections 24 s ahead based on upstream intersection data at 4 s decision intervals. Using the predicted arrival traffic volume, signal timings were designed to minimize delays. A rolling-horizon approach was employed to correct the prediction errors during this process. The performance of the proposed traffic signal control method was validated by comparing it with the traditional time-of-day (TOD) traffic signal operation method over a 24 h period. The results of comparative validation tests conducted through simulations in a virtual environment indicate that the proposed adaptive traffic control system operates efficiently to minimize average control delays. During the morning peak period, a reduction time of 43.19 s per vehicle (57.02%) was observed, whereas the afternoon peak period exhibited a reduction of 37.91 s per vehicle (48.35%). Additionally, data analysis revealed that the optimal phase length suggested by the pre-timed method, which assumes uniform vehicle arrivals, is statistically identical at a 95% confidence level to the average phase length of the adaptive traffic control system, which assumes random vehicle arrivals. This study confirms the necessity of adopting proactive real-time signal control systems that utilize a new traffic information collection method to respond to dynamic traffic conditions and move away from conventional TOD signal operation, which primarily focuses on peak commuting hours. Additionally, it confirms the need for a fundamental shift in the underlying philosophy traditionally used in traffic signal design