This study investigates the role of Junam Reservoir and its surrounding paddy fields as a habitat for migratory birds by considering how different scenarios of habitat loss may affect their populations. It will focus on wintering Anatidae species and take advantage of the population data available for Junam Reservoir and adjacent agricultural fields to analyze habitat-use and dependency patterns. A Bayesian regression model was fitted to estimate the relative dependency at each reservoir and paddy field for each bird species. Network analysis was used to assess the interaction structure and connectivity between habitats and bird species. Furthermore, habitat loss scenarios were simulated in order to predict the outcome of reservoir-paddy field loss on the populations of birds. Among these species, the reservoir loss was much more critical for those highly dependent on reservoirs, such as bean goose, Anser fabalis, and Whooper swan, Cygnus cygnus, but the loss of paddy fields became much more vital for those with higher dependence on paddy fields, such as Baikal teal, Anas formosa. Species that depended on both types of habitats, such as the white-naped crane (Antigone vipio) and the hooded crane (Grus monacha), had additive impacts and suffered the most significant population decline when both reservoirs and paddy fields were lost simultaneously. Network analysis demonstrated that both reservoirs and paddy played equally critical roles in the central nodes of the migratory bird species habitat network and acted as important connectors along migration routes. It is exemplary of the need to develop landscape-level means of maintaining migratory birds and ecosystem stability through the incorporation of ecological connectivity between paddy fields and reservoirs and vice-versa. This stresses integrated management relevant for the entire habitat network rather than single-site focused management, a call for multifaceted conservation efforts, securing of alternative habitats, and restoration of degraded habitats.