While the subduction zone earthquakes have long ground motion durations, the effects are also not covered in seismic design provisions. Additionally, the collapse risk of steel frame buildings subjected to long-duration ground motions from subduction earthquakes remains poorly understood. This paper presents the influence of ground motion duration on the collapse risk of steel frame buildings with special concentrically braced frames in chevron configurations. The steel buildings considered in this paper are designed at a site in Seattle, Washington, according to the requirements of modern seismic design provisions in the United States. For this purpose, the nonlinear dynamic analyses employ two sets of spectrally equivalent long and short-duration ground motions. Based on the use of high-fidelity structural models accounting for both geometric and material nonlinearities, the estimated collapse capacity for the modern code-compliant steel frame buildings is, on average, approximately 1.47 times the smaller value when considering long-duration ground motion record, compared to the short-duration counterpart. Due to the sensitivity to destabilizing P-Delta effects of gravity loads, the influence of ground motion duration on collapse risk is more profound for medium-to-high-rise steel frame buildings compared to the low-rise counterparts.